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Knowledge representation using ontologies

Ontology

expertInAI(X) <« authorOf(X, Y), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence) < hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence) < hasTopic(X, machineLearning)
hasTopic(X, artificialIntelligence) « hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence) < hasTopic(X, naturalLanguageProcessing)

Facts
{authorOf(bob, p), hasTopic(p, knowledgeRepresentation) }
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Knowledge representation using ontologies

Ontology
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Why do we need vector space embeddings”

Ontology

expertInAI(X) <« authorOf(X, Y), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence) « hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence) « hasTopic(X, machineLearning)
hasTopic(X, artificialIntelligence) « hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence) < hasTopic(X,haturalLanguageProcessing)

Facts
{authorOf(alice, q), hasTopic(g, planning) }

Consequences



Why do we need vector space embeddings”
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Neural theorem proving

Ontology

expertInAI(X) < ‘authorOf(X, Y), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence) «hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence) < hasTopic(X, machinelLearning)
hasTopic(X, artificialIntelligence) « hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence) < hasTopic(X, naturalLanguageProcessing)

Facts
{authorOf(alice, g), hasTopic(g, planning) }

Tim Rocktaschel, Sebastian Riedel: End-to-end Differentiable Proving. NIPS 2017: 3788-3800



Neural theorem proving

Ontology

expertInAI(X) < ‘authorOf(X, Y), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence) «hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence) < hasTopic(X, machinelLearning)
hasTopic(X, artificialIntelligence) « hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence) < hasTopic(X, naturalLanguageProcessing)

Facts
{authorOf(alice, g), hasTopic(g, planning)}
Consequences
hasTopic(p, artificiallntelligence) : ¢@(planning) - ¢p(knowledgeRepresentation)

proof strength

Tim Rocktaschel, Sebastian Riedel: End-to-end Differentiable Proving. NIPS 2017: 3788-3800



Neural theorem proving

Ontology

expertInAI(X) < ‘authorOf(X, Y), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence) «hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence) < hasTopic(X, machinelLearning)
hasTopic(X, artificialIntelligence) « hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence) < hasTopic(X, naturalLanguageProcessing)

Facts
{authorOf(alice, g), hasTopic(g, planning)}
embedding of the term
consequences “*knowledge representation”
hasTopic(p, artificialIntelligence) : ¢@(planning) -Gb(knowIedgeRepresentation))

Tim Rocktaschel, Sebastian Riedel: End-to-end Differentiable Proving. NIPS 2017: 3788-3800



Key Issues

Where do the embeddings come from??

» Learned from the knowledge base itself (e.g. knowledge graph completion,
neural theorem proving)

» Learned from text (e.g. word embeddings)

» But are these the right vectors for plausible reasoning?
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Where do the embeddings come from??

>

>
4

Learned from the knowledge base itself (e.g. knowledge graph completion,
neural theorem proving)

Learned from text (e.g. word embeddings)

But are these the right vectors for plausible reasoning?

What is the underlying principle?

>

Similarity-based reasoning is highly heuristic. No strong reason to believe
that something is true just because it is true for a similar predicate or
individual

Is there a way to use embeddings to derive plausible consequences even if
we don’t have rules capturing “similar” situations?

Can we find a single framework in which both rules and embeddings can be
expressed?

Can we formulate a model-theoretic semantics for inference methods that
incorporate embeddings (e.g. to deal with inconsistency)?



Conceptual spaces

Vegetable

Banana

Peter Gardenfors: Conceptual spaces - the geometry of thought. MIT Press 2000



Conceptual spaces

Vegetable

LeafVegetable(X) <« Spinach(X)
Vegetable(X) « LeafVegetable(X)
1 <« Banana(X), Vegetable(X)

Peter Gardenfors: Conceptual spaces - the geometry of thought. MIT Press 2000



Conceptual spaces

Fruit

Banana(X) < Fruit(X), Yellow(X), Sweet(X)



Conceptual spaces

Banana is hetween Orange, Apple and Kiwi



Conceptual spaces: quality dimensions

A

large

black bear

sheep » wild boar
L

vertebrate

rattlesnake

cardinal spider spider
()

plack widow spider
o

dangerous

“Sufficiently large spiders are always scary”



Conceptual spaces: domains
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Conceptual spaces: domains
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Conceptual spaces

How can we obtain conceptual space representations in
practice”

Can we find a generalisation of conceptual spaces for capturing
relational rules (e.g. ontologies, existential rules)?

Can we take inspiration from conceptual spaces for developing
plausible reasoning strategies, even in cases where we only have
partial knowledge about the conceptual space representations?



Overview

Learning conceptual space representations

Relational conceptual spaces

Using vectors for plausible reasoning over
symbolic knowledge




Learning conceptual space representations




Modelling Concepts as Regions
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Learning Gaussian Representations
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Bayesian learning with prior knowledge
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Bayesian learning with prior knowledge

Control how common

the instances are The variance of this Gaussian anodes
how much the instances are dispersed
across the space

P(Clvy) = Aa - Ga(v,)

Prior knowledge

Numeric Temporal llonmmy

B

wom
Communications, and Reg , distri d puting,
Economy, Finance, engineerin 'u-monb. Ooolum
Government, Military,
North American Industrial Classification System,
People, physical elements, Transnationallssues, 1
Transportation, Viruses, World Airports -0.042 -0.033 -0.023 -0.014 -0.004 0005 0015 0024 0034 0043




Prior on mean and variance

Using taxonomic parents as priors

ACC,...,ACC,

Mean of the Gaussian representing A should be probable
according to the Gaussians representing Cs,..,Ck

Variance of the Gaussian representing A should be similar to the
variance of the Gaussians representing its taxonomic siblings

Using the embedding of the concept name




Giblbs Sampling

Generate sequences of parameters i, /icq--- @Nd X, 2.,,... fOr each concept

Steps:
- Init parameters u ,and 2,

- repeatedly iterate over all concepts and in the ith iteration, choose the next samples
Hg and X, for each concept C

Use known dependencies between concepts to construct informative priors on u,and X



Making prediction

Average over the Gibbs samples

(Zf:l log(AcP(v4|C)) + >, log(1 — )\CP(Ui\C))D

maximizing the likelihood to obtain estimates of the scaling parameters 1




Bayesian learning with prior knowledge

SVM linear SVM quadratic

Pr Rec F1 AP Pr Rec Fl AP
1 <|X[<5] 0033 0509 0.062 0.055 ] 0.086 0.046 0.060 0.144
0.084 0.922 0.154 0.067 | 0.116 0.404 0.180 0.163
0.111 0948 0.199 0.081 | 0.151 0.382 0.216 0.247
0217 0.180 0.230 | 0.224 0.721 0.342 0.260

Flat prior Informed prior

Pr Rec F1 AP Pr Rec F1 AP
I <|IX[<5] 0212 0416 0281 0.290 | 0.258 0.508 0.343 0.328
5 < |X|<10| 0.186 0.368 0.247 0.273 | 0.202 0.474 0.283 0.340
10 < |X] <500 0.199 0496 0.284 0.210 | 0.242 0.886 0.380 0.276
| X| > 50 0.316 0.312 0314 0.328 | 0.361 0.678 0471 0.404




Underestimate the coverage of a category
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Conceptual neighbours
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How to find conceptual neighbours?

@ ==

classifier 1 classifier 2

Classifier 2 much better than classifier 1
= A and B are likely conceptual neighbours



How to find conceptual neighbours?

High confidence Medium confidence
Actor — Comedian Cruise ship — Ocean liner
Journal — Newspaper Synagogue — Temple
Club — Company Mountain range — Ridge
Novel — Short story Child — Man
Tutor — Professor Monastery — Palace
Museum — Public aquarium Fairy tale — Short story

Lake — River Guitarist — Harpsichordist




Predicting conceptual neighbourhood from text

In British geography, a hamlet is considered smaller than a village and ...

Find likely conceptual neighbours from large BabelNet concepts

! ! !

Use these to train a text classifier that can predict conceptual
neighbourhood

! ! }

Use the text classifier to identify conceptual neighbours among

small BalbelNet concepts



Results

Pr Rec F1
Gauss 23.0 274 2273
Multi 3777 752 44.2
Similarity; 28.7 69.2 338
Similarity, 30.0 68.1 34.0
Similarity; 31.6 672 343
Similarity, 32.8 78.5 38.2
Similaritys 37.2 80.6 428
SECOND-WEA; 3277 90.1 419
SECOND-WEA, 422 82.6 493
SECOND-WEA; 434 83.1 504
SECOND-WEA, 47.7 842 54.2
SECOND-WEA s 440 82.6 5l1.1
SECOND-BERT;, 38.5 87.1 47.0
SECOND-BERT, 439 84.1 50.8
SECOND-BERT; 449 844 522
SECOND-BERT, 46.2 854 53.3
SECOND-BERT: 438 84.7 51.3

Acc F1 Pr Rec
Avg. 706 69.0 69.4 69.0
BERT 669 658 659 66.2
#sents 61.6 46.6 433 543




Results
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Results

Concept Top neighbour F1
amphitheater velodrome 0.67
proxy server application server 0.61

ketch cutter 0.74
quintet brass band 0.67
sand dune drumlin 0.71
Concept Top neighbour F1
bachelor’s degree undergraduate degree 0.34
episodic video game multiplayer game 0.34
501(c) organization not-for-profit arts organization 0.29
heavy bomber triplane 0.41
ministry United States government 0.33




Similarity in Entity Embeddings

https://fr.wikipedia.org/wiki/Chateau_de_Versailles

https://en.wikipedia.org/wiki/University_Museum_of_Bergen

https://fr.wikipedia.org/wiki/Musée_du_Louvre




Similarity in Entity Embeddings

https://fr.wikipedia.org/wiki/Musée_du_Louvre

https://fr.wikipedia.org/wiki/Chateau_de_Versailles

https://en.wikipedia.org/wiki/University_Museum_of_Bergen

https://en.wikipedia.org/wiki/Gamlehaugen




Similarity in Entity Embeddings

The similarity is inherently multi-faceted, however standard entity
embeddings do not reflect those facets

Instead of learning one embedding for a giving domain, we learn
several low dimensional embeddings, each of which capture
different aspect of similarity.



L earning interpretable dimensions
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Learning interpretable dimensions
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Learning interpretable dimensions

movies whose associated text contains the word “violent”
movies whose associated text does not contain the word “violent”




horror movies
supernatural
scientist
criminal

the animation
touching
budget
political
clever
bizarre
predictable
twists
romantic
eerie

scary

cheesy

she’s

his life
hilarious
vhs

violence
adaptation
sequel

era

Semantic attributes

zombie, much gore, slashers, vampires, scary monsters, ...
a witch, ghost stories, mysticism, a demon, the afterlife, ...
experiment, the virus, radiation, the mad scientist, ...

the mafia, robbers, parole, the thieves, the mastermind, ...
the voices, drawings, the artwork, the cartoons, anime, ...
inspirational, warmth, dignity, sadness, heartwarming, ...
a low budget film, b movies, independent films, ...

socialism, idealism, terrorism, leaders, protests, equality, corruption, ...

schemes, satire, smart, witty dialogue, ingenious, ...

odd, twisted, peculiar, lunacy, surrealism, obscure, ...
forgettable, unoriginal, formulaic, implausible, contrived, ...
unpredictable, betrayals, many twists and turns, deceit, ...
lovers, romance, the chemistry, kisses, true love, ...
paranoid, spooky, impending doom, dread, ominous, ...
shivers, chills, creeps, frightening, the dark, goosebumps, ...
camp, corny, tacky, laughable, a guilty pleasure, ...

her apartment, her sister, her death, her family, the heroine, actress, ...

his son, his quest, his guilt, a man, his voice, his fate, his anger, ...
humorous, really funny, a very funny movie, amusing, ...

laserdisc, videotape, this dvd version, first released, this classic, ...
violent, cold blood, knives, bad people, brotherhood, ...

the stage version, the source material, the novel, ...

the trilogy, the first film, the same formula, this franchise, ...

the fifties, the sixties, the seventies, a period piece, the depression, ...



horror movies
supernatural
scientist
criminal

the animation
touching
budget
political
clever
bizarre
predictable
twists
romantic
eerie

scary

cheesy

she’s

his life
hilarious
vhs

violence
adaptation
sequel

era

Thematic properties

zombie, much gore, slashers, vampires, scary monsters, ...
a witch, ghost stories, mysticism, a demon, the afterlife, ...
experiment, the virus, radiation, the mad scientist, ...

the mafia, robbers, parole, the thieves, the mastermind, ...
the voices, drawings, the artwork, the cartoons, anime, ...
inspirational, warmth, dignity, sadness, heartwarming, ...
a low budget film, b movies, independent films, ...

socialism, idealism, terrorism, leaders, protests, equality, corruption, ...

schemes, satire, smart, witty dialogue, ingenious, ...

odd, twisted, peculiar, lunacy, surrealism, obscure, ..
forgettable, unoriginal, formulaic, implausible, contrived, ...
unpredictable, betrayals, many twists and turns, deceit, ...
lovers, romance, the chemistry, kisses, true love, ...
paranoid, spooky, impending doom, dread, ominous, ...
shivers, chills, creeps, frightening, the dark, goosebumps, ...
camp, corny, tacky, laughable, a guilty pleasure, ...

her apartment, her sister, her death, her family, the heroine, actress, ...

his son, his quest, his guilt, a man, his voice, his fate, his anger, ...
humorous, really funny, a very funny movie, amusing, ...

laserdisc, videotape, this dvd version, first released, this classic, ...
violent, cold blood, knives, bad people, brotherhood, ...

the stage version, the source material, the novel, ...

the trilogy, the first film, the same formula, this franchise, ...

the fifties, the sixties, the seventies, a period piece, the depression, ...



Results

Place types Movies Organisations Buildings
Fours. Geo. OpenC. KeyW. Genre Rating Country HL. Country AL.
MDS 0.34 0.26 0.26 0.26 0.38 0.43 0.67 0.24 0.47 0.47
2
H
a
MDS 0.52 0.27 0.32 0.27 0.43 0.47 0.70 0.27 0.47 0.46
z
e
)
MDS 0.65 0.31 0.35 0.25 0.54 0.54 0.71 0.26 0.38 0.39
=
>
7))
MDS 0.81 045 0.46 0.26 0.58 0.48 0.74 0.27 0.53 0.51

Gaussian




Organising quality dimensions into domains

Select the words that can best be represented as

directions in the 100-dimensional space




Organising quality dimensions into domains

Select the words that can best be represented as

directions in the 100-dimensional space

! ! !

Cluster these words

d(a, b) 1 — cos(wg,wp) ifo(a,b) < A
a, = .
1 otherwise

o(a,b) — min (|p05a N posy| |posq, ﬂposb|)
7 |p05a| , |p05b|



Organising quality dimensions into domains

Select the words that can best be represented as

directions in the 100-dimensional speice

! ! v

Cluster these words

4 ! !

Find the 10-dimensional subspace that can best model the words
from the top cluster as directions

Repeat the same process on the 90-dimensional remainder space,
disregarding words that are already modelled in the subspace




Organising quality dimensions into domains
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Organising quality dimensions into domains
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Results

Place types Movies Organisations Buildings

Fours. Geo. OpenC. KeyW. Genre Rating Country HL. Country AL.

MDS 0.34 0.26 0.26 0.26 0.38 0.43 0.67 0.24 0.47 0.47

v IncAgg 045 0.30 0.30 0.25 0.40 0.47 0.76 0.26 0.50 0.50
E CosIlncAgg 045 0.26 0.30 0.24 0.38 0.43 0.75 0.23 0.43 0.42
a IncHDB 043 0.26 0.28 0.25 0.38 0.40 0.50 0.22 0.46 0.46
NonlncHDB 0.30  0.20 0.27 0.23 0.34 0.40 0.50 0.20 0.46 0.47
NonlncAgg 0.33  0.24 0.27 0.23 0.33 0.42 0.40 0.21 0.48 0.47

MDS 0.52 0.27 0.32 0.27 0.43 0.47 0.70 0.27 0.47 0.46

e IncAgg 0.58 0.34 0.34 0.27 0.41 0.47 0.77 0.30 0.54 0.52
E CosIncAgg 0.54  0.28 0.34 0.25 0.40 0.45 0.78 0.26 0.47 0.45
) IncHDB 0.57 0.26 0.31 0.27 0.41 0.45 0.70 0.27 0.49 0.50
NonlncHDB 043  0.24 0.27 0.26 0.38 0.44 0.60 0.21 0.48 0.49
NonlncAgg 0.36  0.30 0.29 0.24 0.38 0.45 0.65 0.22 0.51 0.50

MDS 0.65 0.31 0.35 0.25 0.54 0.54 0.71 0.26 0.38 0.39

= IncAgg 0.73 0.33 0.37 0.26 0.54 0.55 0.76 0.26 0.52 0.51
S CosIncAgg 0.62  0.33 0.34 0.25 0.52 0.53 0.80 0.12 0.50 0.50
2 IncHDB 0.65 0.30 0.36 0.23 0.50 0.51 0.70 0.20 0.51 0.51
NonlncHDB 0.60  0.35 0.37 0.24 0.46 0.52 0.68 0.24 0.52 0.51
NonlncAgg 0.58  0.35 0.35 0.24 0.48 0.51 0.72 0.26 0.50 0.51

= MDS 0.81 045 0.46 0.26 0.58 0.48 0.74 0.27 0.53 0.51
S IncAgg 0.87 048 0.45 0.28 0.60 0.51 0.81 0.27 0.54 0.55
§ CosIncAgg 0.81 045 0.46 0.28 0.60 0.51 0.81 0.28 0.53 0.53
5 IncHDB 0.84 043 0.43 0.27 0.60 0.51 0.80 0.28 0.54 0.53
NonlncHDB 0.75 041 0.40 0.23 0.51 0.47 0.75 0.27 0.59 0.53
NonlncAgg 0.71  0.46 0.45 0.22 0.52 0.46 0.77 0.27 0.58 0.53




Learning Multi-Facet Entity Embeddings

Experts
(Glove models)

softmax

(I R

hidden layers
t t t t f t f
0000000)




Summary on relational conceptual spaces

Full space Expert O Expert 3

Less Similar - - More Similar



Summary on learning conceptual space representations

We can model concept as convex regions, using Gaussian
representations with prior knowledge

The role of conceptual neighborhood, for modelling categories,

focusing especially on categories with a relatively small number of
instances

Learning multi-facets embeddings, characterised as quality

dimensions in the embedding using heuristic methods and Mok
model



Open gquestions

Can we learn conceptual spaces from data”

How to learn meaningful region representations for concept that do
not have instances”

How to learning disentangled representations from contextualised
word embeddings?



Relational conceptual spaces



What is the relational counterpart of a
conceptual space?

black bear

Sheep . W|Id boar
o

large

vertebrate

rattlesnake

cardinal spider spider
o

plack widow spider

dangerous




Knowledge graphs

national association

football team

ranking instance of

human Belgium national

football team

member of
sports team

instance of

Kevin De Bruyne

country of
citizenship



Knowledge graphs

national association

football team

ranking

instance of

instance of

member of
sports team

country for
sport

country of
citizenship



Neural Link Prediction

® :
Belgium

.Kevin De Bruyne

() : .
national association
football team

[ . :
Belgium national o
football team human

f(h,t) > A1 if (h,r,t)is avalid triple
f.(h,t) < A otherwise



Transk (Bordes et al 2013)

Translation Intuition: For a triple (h, r, ), h 4+ r = t if the given
factis true, elseh +r # t

Scoring function: f.(h,t) = —d(h +r,t)

.Kevin De Bruyne




DistMult (Yang et al 2015)

DistMult adopts bilinear modeling
fht)=mor)-t= ) h-r-1

Intuition: The score function can be seen as the similarity between
hOrandt




Region based view of relations: Transk

f(a,b) =—d(a+r,Db)



Region based view of relations: DistMult

f(a,b)=a0Orob



Modelling rules as spatial constraints

plant herbivore omnivore carnivore
animal

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Modelling rules as spatial constraints

animal

,2zebra)

plant

herbivore omnivore carnivore
animal

plant

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Modelling rules as spatial constraints

animal

,2zebra)

plant

herbivore omnivore carnivore
animal

plant

Animal(Y) « Carnivore(X), Eats(X, Y)




Modelling rules as spatial constraints

animal

,2zebra)

plant

herbivore omnivore carnivore
animal

plant

3Y . Eats(X, Y) A Animal(Y) « Carnivore(X)




Modelling rules as spatial constraints

Each individual a is represented by a point #(a) € R”
Each k-ary relation r is represented by a convex region n(r) € R*”

We refer to the mapping 7 as a



Modelling rules as spatial constraints

Each individual a is represented by a point #(a) € R”
Each k-ary relation r is represented by a convex region n(r) € R*”

We refer to the mapping 7 as a geomelric interpretation

The relational fact r(ay, . . . , ;) is satisfied in a geometric
interpretation # if:

n(a;) @ ... ®nla) € nr)




Modelling rules as spatial constraints
Now consider a rule of the following form
r(X, ..., X) < sX;,.... X))

This rule is satisfied by a geometric interpretation 7 if

n(s) € n(r)



Modelling rules as spatial constraints

Now consider a rule of the following form

r(Xq,..., X)) < s(X,..., X)), 1(X,...,X)

This rule is satisfied by a geometric interpretation 7 if

n(s) Nn(t) € n(r)



Modelling rules as spatial constraints

A

n(s)

n(?)

n(r)

r(XpXZ) <« S(X19X2)9 t(XlaXz)



Modelling rules as spatial constraints

Now consider a rule of the following form

r(X19X3) <~ S(X19X2)9 t(Xza X3)



Modelling rules as spatial constraints

Now consider a rule of the following form
r(Xla X3) <~ S(X19 X2)9 t(Xza X3)

We can always view binary relations as ternary relations in
which one argument is ignored

(X, Y,Z) = r(X,Z)
s*(X,Y,Z) = s(X,Y)
(X, Y,Z) = s(Y,Z)

Leading to the following constraint:

n(s*) Nn(r*) S n(r*)



Modelling rules as spatial constraints

A

Y
n(s)
r/(t)a




Modelling rules as spatial constraints

A
Y

r/(t)o

n(s*)
n(s)




Modelling rules as spatial constraints

A

Y n(s*)

n(s)

y

n(t)é
n(*)
>




Modelling rules as spatial constraints

Let us now formally define the relationship between #(r) and its
extension n(r*), for a given relation r

Let I C {1,...,k}, then we define the restriction of a vector
(X(s...,X.,) € RE" 01 as follows:

(x19°' xkn)‘l'l @( S8 EI nl+n)

el



Modelling rules as spatial constraints

Let us now formally define the relationship between #(r) and its
extension n(r*), for a given relation r

Let I C {1,...,k}, then we define the restriction of a vector
(X(s...,X.,) € RE" 01 as follows:

(x19°' xkn ‘LI @( YA o B nl+n)

el

For instance, forn =2, k=4and I = {1,4} we have

(X1, X9, X3, Xg X5, X, X7, Xg) 1 11,4} = (X1, X5, X7, Xg)

vector representing
the last argument
of a 4-ary relation



Modelling rules as spatial constraints

Intuitively, if (x,...,X;.,) is the representation of a tuple (ay, . . ., a;)
then (xy,...,X;.,) | [is the representation of the tuple we obtain if we
only keep the arguments at the positions that belong to /



Modelling rules as spatial constraints

Intuitively, if (x,...,X;.,) is the representation of a tuple (ay, . . ., a;)
then (xy,...,X;.,) | [is the representation of the tuple we obtain if we
only keep the arguments at the positions that belong to /

Let R C R pe a region, corresponding to the representation of
some [-ary relation r. The cylindrical extension of R is given by:

exti(R) = {(x e R*"|x | ] € R}

Note how this cylindrical extension corresponds to the
representation of a k-ary relation, which is defined in terms of the [
-ary relation r, with the remaining arguments being ignored. The set
of indices I determines which of the k arguments are non-trivial.



Modelling rules as spatial constraints

Consider again the following rule:

r(X19X3) <« S(X19X2)9 t(Xza X3)

This rule is satisfied in a geometric interpretation 7 if

ext?l,z}(n(s)) N ext?z’B}(n(t)) C ext?m}(n(r))



Modelling rules as spatial constraints

We can similarly model existential rules:

3X2 . F(Xl, Xz) A\ S(Xz, X3) <« t(Xl’ X3)
This rule is satisfied in a geometric interpretation 7 if

n(t) C <ext?1,2}(;7(r)) next?w(n(s))) | {13)



Modelling rules as spatial constraints

We can similarly model existential rules:

This rule is satisfied in a geometric interpretation 7 if

n(r) C <ext?1,2}(;7(r)) N ext?m}(n(s))) 1l {1,3}



Can KG embeddings model arbitrary rules?
Consider a bilinear model, i.e.:
f(a,b) =a’ M..b

Suppose the following rules are modelled:
rX,Y) - s(X,Y)

r(X,Y) N s(X,Y)

S
AR
1 I ... [Tk

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Can KG embeddings model arbitrary rules?

Consider a hilinear model, i.e.:
fla,b) = al M. b

Suppose the following rules are modelled:
rX,Y) - s(X,Y)

r(X,Y) N s(X,Y)

Then there exists a permutation of the predicates: / "\
r r
ire, ... rk}_{ SEERLSREP ] Tp Oq
t t
Suchthat: V1 <i<p(r,XY)—r, X,Y)) N 1

V1<i<q{r,X.Y)—r, (X,Y) 7 Tg

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018

0'+1




Can KG embeddings model arbitrary rules?

Consider a model in which relations can be modelled by
arbitrary convex polytopes

Then all (sets of) rules of the following form (called quasi-
chained) can be modelled

B/A...AB;A...AB, = 3X,,... X, H A...AH,

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Can KG embeddings model arbitrary rules?

Consider a model in which relations can be modelled by
arbitrary convex polytopes

sSuch a model cannot model the following rule

J— N rl(XaY)9r2(XaY)

together with the following facts:

{rita,a), r(b,b),r,(a,b),r(b,a)}

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Can KG embeddings model arbitrary rules?

Indeed, if 17(r;) and 1(r,) are convex, and we have

n(a) ® na) € n(ry)
n(b) @ n(b) € n(r)
n(a) @ n(b) € n(ry)
n(b) ® n(a) € n(r,)

Then we also have

(n(a) +nb)) _ (n(a) +n(b))
2 & 2

€ n(ry) Nn(ry)

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Can KG embeddings model arbitrary rules?

Indeed, if 17(r;) and 1(r,) are convex, and we have

n(a) @ n(a) € n(r)
n(b) @ nb) € n(r)
n(a) @ n(b) € n(ry)
nb) @ na) € n(r,)

Then we also have

(n(a) +nb)) _ (n(a) +n(b))
2 & 2

€ n(r;) Nn(ry)

Victor Gutierrez Basulto, Steven Schockaert: From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the
Compatibility between Vector Space Representations and Rules. KR 2018



Summary on relational conceptual spaces

We can model relational knowledge using convex regions, similarly

to conceptual spaces, by considering the Cartesian product of
“standard” conceptual spaces

Existential rules can be viewed as spatial constraints over such
representations

This makes it possible, in principle, to exploit given relational
knowledge when learning an entity embedding, allowing us to
generalise from a given ontology and knowledge graph in a
principled way.



Open gquestions

Is there a larger fragment of existential rules that can be faithfully
modelled in terms of geometric interpretations with convex regions?

Is there a way to relax the convexity assumption such that arbitrary
existential rules can be captured, while keeping the representations
simple enough to be learnable?

In practice, it is difficult to learn good representations when allowing
arbitrary convex polytopes. Is it possible to find interesting special
cases that can still capture a non-trivial fragment of existential rules,
while being easier to learn?

Embeddings essentially correspond to a single interpretation. There is
No obvious counterpart of a “knowledge base”, as a set of possible
Interpretations.



Alternative approach

Consider the following propositional rules:

mother < female, parent

female < mother
parent < mother

Under the conceptual spaces view, these rules correspond to the
following constraint

n(mother) = n(female) N n(parent)

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



Alternative approach

Consider the following propositional rules:

mother < female, parent

female < mother
parent < mother

Under the conceptual spaces view, these rules correspond to the
following constraint

n(mother) = n(female) N n(parent)

In practice, labels are usually predicted using vector dot
products, e.g. we may assume

n(mother) = {xeR":0(x -V ) > 0.5}

mother

The @above constraint cannot be modelled using such regions



An encoder-decoder view

has-wings
has-wings . Z:has—feathers
has-feathers — iciplelolelsTll —~ € — [Ho[SIolololCigN —. - 1)\

can-fly ~ is-bird

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

has-wings
has-wings N Z:has—feathers
has-feathers — [ciglelelolcI@ll —~ € — [Je[Slelolo[SIgN —. - fi\

can-fly e is-bird

has-wings A has-feathers A can-fly — is-bird

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

Assumption: entities are encodes by aggregating attribute
vectors

1
Emb(a,...,a)=—(@;+...+a,)
n ——

the attributes which entity embedding of
e is known to satisfy attribute an

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

Assumption: entities are encodes by aggregating attribute
vectors

|
Emb(ay,...,a,) =—(@;+...+a,)
n

a;+...+a,
la;+ ...+ a,]

Emb(ay,...,a,) =

n

Emb(a,.. ... a,) = argmax, )’ logo(e - a) + k| e||?
=1
Emb(ay,...,a,) = max(ay,...,a,)

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

Assumption: labelling function depends on (possibly different)
attribute embeddings

Labe)={be A |e-b> 1)

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

Assumption: labelling function depends on (possibly different)
attribute embeddings

Labe)={be A |e-b> 1)
_ab(e) = {b € o |d(e,b) <0,)
Lab(e) = {b e o |RelLU(e) - b > 0}
Lab(e) ={be o |b<e}

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

Emb(ay, ..., an) Lab(e) Monotonic Non-mon.
GZZ a; {ble- B~2 Ao} X X \
w2 & {bld(e,b) < 6} X X
rSaT {ble-b >} * ’
el {b] d(e,b) < 6} X X
argmax, » ;logo(e-a;) + klle||* {b|e-b > Ay} X X
@g max, » ; logo(e-a;) + klle||* {b|d(e,b) < 6,} X X J
15 a {b|RELU(e) - b > 0} v v
a; ®...0ay {b|e-b >0} v v
a; ®...0 ay {ble-b >0} X X
max(ay, ..., an) {b|b =<e} v X

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



An encoder-decoder view

Emb(ay, ..., an) Lab(e) Monotonic Non-mon.
L5 a {ble-b> X} X X
%ZZ a; {b|d(e,b) < 6} X X
e (ble-b =X} X X
el {b] d(e,b) < 6} X X
argmax, y_,logo(e-a;) + rlle|* {b|e-b > Ay} X X
argmax, y_.logo(e-a;) + lle|* {b|d(e,b) < 6} X X
15 a {b|RELU(e) - b > 0} v v
a1 ® ... 0 ap {ble-b >0} v v
a; ® ... ay {ble-b >0} X X
max(ay, ..., an) {b|b =<e} v X

Steven Schockaert: Modelling Monotonic and Non-Monotonic Attribute Dependencies with Embeddings: A Theoretical Analysis.
AKBC 2021



Summary on encoder-decoder view

The encoder-decoder view offers an alternative way to integrate
rules and vectors, which is less demanding than conceptual
spaces:

» Conceptual spaces: every point in the space corresponds to a model of
the rule base

» Encoder-decoder model: every point that can be generated using the
encoder corresponds to a model of the rule base

The limitations identified for the encoder-decoder view also apply
to Graph Neural Network based approaches to inductive
knowledge graph completion



Using vectors for plausible reasoning over

symbolic knowledge




Plausible Reasoning”?

Knowledge acquisition bottleneck

Rules and ontologies manually

o'l =4 curated

Experts are not good programmers
Costs crowdsourcing

A

Knowledge bases are inevitably incomplete



Objective

Equip KR-symbolic systems with inductive
capabilities using vectors

Develop formalisms incorporating knowledge

from vectors to infer plausible concept
inclusions (rules)

In a principled way!




Inductive reasoning

Tomatoes contain vitamin B6
Mushrooms contain vitamin B6

Carrots contain vitamin B6




Inductive reasoning

Tomatoes contain vitamin B6
Mushrooms contain vitamin B6

Carrots contain vitamin B6

Kale contains vitamin B6
Spinach contains vitamin B6

Carrots contain vitamin B6




Taxonomies are too coarse-grained

Seafood Vegetable

Root vegetable Edible Mushroom Iceberg lettuce

source: wikidata



Inductive reasoning

Tomatoes contain vitamin B6
Mushrooms contain vitamin B6

Carrots contain vitamin B6

2 mushrooms

carrots

tomatoes |
contains B6

>



S

» Several data-driven approaches have been proposed
for automatically extending ontologies.

» exploit Wikidata, Freebase,

Word BabelNet
embedding » encode information about the
Vector

similarity between different

Representations "
of Knowledge Knowledge concepts
graph » but no other dependencies:
embeddings subsumption, existential

restrictions (unlike e.g some
ontology languages)



Deductive and Inductive Reasoning

Exploit rules and other symbolic KR approaches
for learning higher quality vector space representations

Use vector representations to infer missing
knowledge
» knowledge graph triples (Neelakantan et al. 2015; Xie et
al. 2016)

» ABox assertions (Rizzo et al. 2013; Bouraoui and
Schockaert 2018)

» concept inclusions (Li, Bouraoui, and Schockaert 2019)



Our proposal

An Inference mechanism based on a clear model-
theoretic semantics

» Inference of plausible concepts inclusions

Formalisation of some form of inductive reasoning in
description logic ontologies

» integration between the deductive and inductive inferences

Computational complexity bounds for reasoning
(subsumption) in the description logic EL



What kind of Inductive Reasoning?

INTERPOLATION: cognitive models of
category-based induction.

Giraffe

Natural properties (concepts)

» correspond to convex regions in a
suitable vector space

Conceptual betweenness: C is
conceptually between A and B if it has all
the natural properties of A and B

Herblvores



EL Description Logic
Horn description logic

C,D:=T|A|CnD|3r.C|L

Young rn Cat C Cute
Adult m WildCat E Dangerous

Young rn Dog C Cute
WildCat C Jeats.Meat

Core of huge medical ontologies, €.g. SNOMED CT

Reasoning is tractable (PTIME), e.g. concept subsumption



Extending EL description logic

C,D:=T|A|CnD|3r.C|N
N,N:=A"|NON |N XN

» A’ belongs to a distinguished set of natural concept
names

» Knowledge about conceptual betweenness N X N’
can be obtained from vector representations



Extending EL description logic

Rabbit . Herbivore

Giraffe & Herbivore

Zebra £ Rabbit X Giraffe
Herbivore C deats . Plant

Zebra £ Hervbivore

ANCLCRB
ANDCB

AN(CXD)CB

Herbivore is a natural concept name



Non-interference

From data we can only learn betweenness information
about concept names

Nectarine C Plum x Peach
Sweet M Nectarine C (Sweet n Plum) X (Sweet 1 Nectarine)

Sweet [-] (Plump, Peach)



Formalisation of underlying semantics

Which concepts are natural? How to interpret conceptual
' betweenness?

» Feature-enriched interpretations (related to
Formal Concept Analysis)

» Geometric interpretations (related to Conceptual
Spaces)



Formalisation of underlying semantics

Feature-enriched interpretation

» A classical DL interpretation + finite set
of features

» C is natural if it is completely
characterised by its set of features
..e., d is an instance of C iff the features
of C are contained in the features of d

» A X B is the concept characterised by
the

» A X B is a natural concept

ts

" {818}

55 gate
o —

) (8281

%{gl’gbﬁ’ﬁl}




Formalisation of underlying semantics

Geometric Interpretation

» Concepts are interpreted as
regions from a vector space

» A concept is natural if the region
Interpreting it is convex

» A X B is interpreted as the convex o
null of the union the regions Rabbit
interpreting A and B




Complexity

We look at the problem of concept subsumption
I ECLCED

2 under the feature semantics

» PSpace-hard under the geometric semantics

Harder than in pure EL! (



A unifying approach

Betweenness Semantics
An interpretation consists of a classical DL

interpretation .¥ and a ternary relation
bet C A7 x A7 x A7

I

» C P D contains all individuals that

between instances of C and D

» If we impose certain properties to bet (e.g. symmetry), we
can see the feature-based semantics as a special case.



Defeasible Reasoning

We focused on entailment, but conceptual betweenness
IS learnt from data, so noisy

Carrot is between Lettuce and Courgette

Carrot C Lettuce i Courgette
Carrot C Lettuce i Courgette i Tomato

Lettuce C Green
Courgette C Green

Carrot C Orange

It is straightforward to add a defeasible mechanism,
e.g. a possibilistic extension



Interpolation vs Similarity

Adding similarity (e.g. probabilities, weights) to DLs
seems straightforward. Why concept betweenness?

Challenge: How do we relate similarity of
Instances to plausible inferences.

Given that & E C E D, how similar E needs to be
toinferthat EC D?




Analogical Reasoning

In Al analogical reasoning builds on analogical proportions:
AistoBwhat CistoD

Man is to King what Woman is to Queen

Note: Analogical knowledge can be learnt from data GPT3 or

matrix factorization

Develop a formalism that uses (learnt) analogies allowing to
extrapolate and translate



Analogical Reasoning

Rule extrapolation

Young rn Cat C Cute
Adult n WildCat C Dangerous
Young n Dog C Cute

Cat : WildCat :: Dog : Wolf
Adult m Wolf E Dangerous




Analogical Reasoning

Rule translation

Program C 3specifies . Software
Program : Plan :: Software : Building

Plan C 3Ispecifies . Building

Transfer knowledge from one domain to another



Extending EL with Analogies

EL™ + analogical assertions of the following form
ADB::Cp>D

Feature-based semantics

A classical DL interpretation 7=( A7,.7)

A mapping 1 from from individuals to features from a set
F = F1U...UFk, Where &iis viewed as a domain

A equivalence relation ~ on {1,...,k} indicating which
domains are equivalent

For each pair (i,j)e~, a bijection oij between &; and &;,
satisfying 0ij1=0jand 0ij ° Ojk = ik




Notable Properties

Lifting analogies

A > B::C, > D,

A, > By::C, > D,

(A, MA) D> (BN B,):(C,nCy) > (D, ND,)

ApDB:C>D
(dr.A) > (dr.B)::(Ar.C) > (Ar.D)

Extrapolation and translation patterns




Open questions: interpolation

eBeyond conceptual betweenness

if burglary (L, T — 2), burglary (L, T — 1) then burglary (L, T)
if burglary (L, T — 1), burglary (L,, T — 1), burglary (L,, T — 1),n(L, L,),n(L, L,), L, # L, then burglary (L, T)

if burglary(L, T — 2), burglary (L,, T — 1), burglary (L,, T — 1),n(L, L,),n(L, L,), L, # L, then burglary (L, T)
if burglary (L,, T — 2), burglary (L,, T — 2), burglary (L, T — 1),n(L, L,),n(L, L,), L, # L, then burglary(L, T)

eBetter understanding of the complexity of the
formalisms under the bet semantics



Open questions: analogies

What is the exact computational complexity of
reasoning with analogies”

Is there a simpler semantics”
A semantics driven by an application”

Other rule-like formalisms”’



Summary on plausible reasoning in DLS

We provided model-theoretical semantics, that allows to capture

conceptual betweenness on concepts such that the interpolation
pattern is sound

Explored different alternatives varying in complexity

Initiated the study of analogical reasoning

We believe these are valuable first steps towards effectively using
knowledge from vector embeddings to enable ontology-hased
systems with inductive capabilities



Conclusions

There has been a lot of work on identitying plausible missing triples
IN knowledge graphs using embeddings

Similarly, we may try to identify plausible missing generic knowledge
In ontologies

However, if we want to tightly integrate “knowledge completion”
with deductive reasoning, we need a principled mechanism

One possible answer is to extend conceptual spaces, modelling
relations as regions in high-dimensional spaces and viewing rules
as qualitative spatial constraints between these regions

Another possiblility is to abstract away from actual conceptual
space representations and develop a calculus for reasoning about
incomplete qualitative constraints on conceptual space
representations (e.g. rules and betweenness assertions)



